Русская фантастика / Книжная полка WIN | KOI | DOS | LAT
                                   Части                         Следующая
Александр Потупа

                           Бег за бесконечностью


Памяти отца Сергея Николаевича

В книге рассказывается  о  современных  представлениях  об  одной  из  самых
быстроразвивающихся  фундаментальных  наук  -  физике  элементарных  частиц.
Основное внимание уделено описанию сильновзаимодействующих частиц -  адронов
их поведению в различных реакциях при высоких энергиях.


СОДЕРЖАНИЕ

ГЛАВА ПЕРВАЯ, в которой происходите знакомство  с  очень  молодой  наукой  -
физикой элементарных частиц
Рождение электрона
У перекрестка загадок
На арене появляются фотон и протон

ГЛАВА ВТОРАЯ, увлекающая нас в небольшое путешествие по временам и теориям
Кое-что о путешествиях во времени
Маршрут © 1 Неуловимые атомы
Маршрут © 2 Квантованный мир
Маршрут © 3 Снова квантованный мир

ГЛАВА ТРЕТЬЯ о высоких энергиях и глубоких идеях
Масштабы большого и малого
О простом любопытстве, воздухоплавании и космических лучах
Ключи к микромиру

ГЛАВА ЧЕТВЕРТАЯ, повествующая о потопе открытий и способах наскоро соорудить
комфортабельный ковчег
Счастливые "допотопные времена"
Адронный потоп
Спасительные симметрии
Нашествие призраков

ГЛАВА ПЯТАЯ, где рассказано об очень сложных элементарных частицах - адронах
Как выглядит адрон?
Где прячутся кварки
Что делать с эталонами и аналогиями
Как рождается адрон?

ГЛАВА ШЕСТАЯ, полностью направленная в будущее
Надежды, деньги и все такое
Самая большая мечта
Главное впереди




ГЛАВА ПЕРВАЯ,
В КОТОРОЙ ПРОИСХОДИТ ПЕРВОЕ ЗНАКОМСТВО С  ОЧЕНЬ  МОЛОДОЙ  НАУКОЙ  -  ФИЗИКОЙ
ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Все опыты уязвляют двумя когтями -
надеждой и любопытством.

О. Бальзак

РОЖДЕНИЕ ЭЛЕКТРОНА

     Позвольте представить вам одну из  самых  быстроразвивающихся  областей
современной науки - физику элементарных частиц.  Представить  не  только  во
всем величии гигантских уникальных приборов, но и в тех,  порой  мучительных
неясностях, которые всегда подстерегают дерзнувшего понять.  Представить  не
только как совокупность ясных, твердо установленных фактов и положений, но и
как великий путь эволюции наших взглядов на структуру вещества, вернее,  как
этап пути, начало которого подернуто полулегендарной дымкой историко-научных
гипотез, а конец и вовсе не виден.
     Как это следует из названия, раздел физики, который мы будем обсуждать,
занимается свойствами простейших составляющих вещества, таких  объектов,  из
которых на сегодняшний день не удалось выделить ничего более  элементарного,
чем они сами.
     Главная проблема,  стоящая  перед  физиками,  заключается  в  выяснении
природы сил, действующих между элементарными частицами в различных реакциях.
По-видимому, эти же силы обусловливают и существование самих  частиц,  и,  в
конечном счете, именно то строение окружающего мира, которое мы наблюдаем.
     В принципе физика элементарных частиц очень молодая наука. В 1977  году
ей исполняется ровно 80 лет, и она практически  целиком  принадлежит  нашему
веку. Первая элементарная частица, а следовательно,  и  первый  объект  этой
науки  -  электрон  -  был  открыт  английским  физиком  Дж.  Дж.  Томсоном,
знаменитым "Джи-Джи", в 1897 году. Так что мы вправе говорить  не  только  о
молодости, но, пожалуй, о юности этой науки.
     Это  звучит  наилучшим  комплиментом,   если   вспомнить   высказывание
академика В. Гинзбурга, который назвал  физику  элементарных  частиц  "самой
красивой дамой физического королевства".
     Ее родословная  чрезвычайно  интересна  и  поучительна,  и  нам  вскоре
предстоит отправиться в специальное путешествие по ее временам и теориям.  А
пока давайте обсудим то  удивительное  сочетание  счастливой  случайности  и
ясной целенаправленности поиска, которое непосредственно привело  физиков  к
порогу микромира.

     Один из путей к  современной  науке  об  элементарных  частицах  возник
примерно в начале  XVIII  века  в  связи  с  исследованиями  распространения
электричества в разреженных газах. Эти исследования  служили  в  свое  время
едва  ли  не  образцом  чрезвычайно  сложной  в  техническом   отношении   и
неблагодарной работы.  Действительно,  правильного  понимания  электрических
явлений еще не было, а необходимость создания  сосудов  с  высокой  степенью
разрежения  газов,  или,  как  говорят,  с   высоким   вакуумом,   порождала
серьезнейшие трудности при постановке буквально каждого нового опыта.
     И неудивительно, что основной наградой большинству  ученых,  рискнувших
взяться за такую работу, было чисто эстетическое  наслаждение  -  они  могли
долго любоваться замечательным свечением, возникающим при электризации колбы
с достаточно хорошим вакуумом. Удивительно, пожалуй,  другое  -  упорство  и
изобретательность,  несмотря  на  все  проблемы   и   неясности,   приносили
прекрасные плоды. Так, русский ученый В. Петров,  который  одним  из  первых
стал систематически изучать зависимость электрического разряда  в  газах  от
формы электродов, расстояния между ними, уровня разрежения в сосудах, сделал
в 1802 году открытие важнейшего явления - электрической дуги.
     Решающий сдвиг в исследованиях стал  возможен  лишь  после  изобретения
немецкого стеклодува Г. Гейслера, который в 1855 году предложил использовать
для создания действительно  хорошего  вакуума  принципиально  новый  ртутный
насос.
     В течение последующего десятилетия изучение явлений  в  газонаполненных
разрядных трубках поднялось на качественно новый уровень. Были  повторены  и
значительно расширены все основные эксперименты,  а  главное  -  был  твердо
установлен особый вид свечения стеклянной  оболочки  колбы,  так  называемая
флуоресценция, под действием неизвестных агентов, вылетающих с  отрицательно
заряженного электрода - катода. Этот эффект смогли не только обнаружить,  но
и довольно подробно исследовать именно в  вакуумных  трубках  с  чрезвычайно
высоким разрежением. Таинственные агенты, вызывающие свечение, были  названы
катодными лучами.
     Однако  после  открытия  катодных  лучей  потребовалось  еще  несколько
десятилетий для того, чтобы уверенно отождествить их с потоком  элементарных
частиц  вещества.  Вокруг  результатов  основных  экспериментов  разгорелась
настоящая война идей.
     Ряд крупных физиков полагали, что катодные лучи имеют  ту  же  природу,
что и свет, то есть катод излучает  некоторые  волны.  К  лагерю  волновиков
примыкал, в частности, первооткрыватель электромагнитных волн Г. Герц.  Даже
сам автор термина "катодные лучи"  немецкий  физик  Э.  Гольдштейн,  который
сделал первое подробное описание их характеристик, был уверен в правильности
прямой аналогии со световыми явлениями.
     Точка зрения противников сводилась к тому, что новые  лучи  состоят  из
отдельных  заряженных  частиц,  как  говорили  в  те   времена,   корпускул.
Сторонники корпускулярной гипотезы, в конечном  счете,  восторжествовали,  и
главная заслуга в этом принадлежит двум английским ученым У.  Круксу  и  Дж.
Дж. Томсону.
     У. Крукс - типичный представитель ученого мира старых,  добрых  времен.
Человек разнообразных интересов, он внес весомый вклад в развитие нескольких
областей естествознания,  например,  именно  он  открыл  химический  элемент
таллий.
     Основные  достижения  У.  Крукса  были  связаны  с  его   работами   по
газоразрядным трубкам и глубокими  исследованиями  свойств  катодных  лучей.
Исключительная изобретательность в создании трубок различных конфигураций  с
самой разнообразной внутренней "начинкой" позволила ему доказать, что  новые
лучи распространяются прямолинейно,  могут  отклоняться  магнитным  полем  и
обладают импульсом. Очень важно и  то,  что  У.  Крукс  сумел  заглянуть  за
границы, очерченные доступными ему  опытными  данными,  -  он,  по-видимому,
первым предсказал, что заряженные частицы, вылетающие  из  катода,  являются
особым, не сводящимся к уже известным, состоянием вещества.
     Однако  возражения  противников   корпускулярной   гипотезы   и   после
замечательных экспериментов У. Крукса не были устранены.  В  борьбе  научных
идей опыт действительно главный судья, но, к сожалению, не только одного,  а
порой и десятка независимых опытов не  хватает  для  строгого  выбора  между
двумя конкурирующими гипотезами.
     Само существование противоположных мнений по поводу одного  и  того  же
явления - наилучший способ ускорить постановку опытов,  способных  разрешить
все споры. Другой вопрос,  что  не  всегда  имеется  возможность  немедленно
добиться  решения  именно  таким   естественным   путем,   например,   из-за
несовершенства экспериментальной техники.
     Какие же преграды стояли на  пути  корпускулярной  гипотезы  о  природе
катодных лучей после работ У. Крукса? В последнее десятилетие XIX века  этим
работам и блестящему исследованию двадцатипятилетнего французского физика Ж.
Перрена,  который  доказал,   что   новые   лучи   переносят   отрицательный
электрический заряд, противостояли удивительные результаты самого Г.  Герца,
ставшего к тому времени благодаря открытию  радиоволн  одним  из  крупнейших
авторитетов в экспериментальной физике. А результаты Г. Герца были и  впрямь
поразительны. Несмотря на превосходное владение  методами  постановки  самых
тонких  опытов,  он  не  сумел  обнаружить  отклонение  катодных   лучей   в
электростатическом поле. Разве могут добропорядочные электрически заряженные
частицы не реагировать на такое поле? Но почему же тогда они ведут себя  как
следует под действием магнитов?
     Так, буквально на самом пороге нового века, уже у готовой, ладно сбитой
колыбели  физики  элементарных  частиц  возникла  трудная,   пожалуй,   даже
загадочная ситуация.
     Решение  было  найдено  Дж.  Дж.  Томсоном.  Он  рассуждал   просто   и
убедительно. Если катодные лучи во всех других экспериментах вели  себя  как
заряженные частицы, то они непременно должны отклоняться  электростатическим
полем. Если  этого  не  наблюдается,  то  "виноваты"  не  обязательно  лучи,
возможно,  "виновато"  поле,  которое  просто  не  проникает  в  трубку.  Но
экранировать такое поле способен лишь хороший проводник  (электростатическое
поле в проводящую среду не проникает), а стекло трубки таковым не  является,
значит,  проводящей  средой  является  остаточный  воздух   внутри   трубки.
Дальнейшее было, как говорится (к сожалению, только "как говорится"!), делом
техники. Давление газа  было  заметно  понижено,  и  необходимое  отклонение
катодных лучей стало экспериментальным фактом.
     Впоследствии,  добиваясь  взаимной  компенсации  отклонений  с  помощью
одновременного наложения известных электрических и магнитных полей, Дж.  Дж.
Томсон сумел  определить  такую  важную  характеристику  новых  частиц,  как
отношение заряда к массе e/m. Именно эта величина, а не  заряд  и  масса  по
отдельности, была доступна в то время прямому измерению. С этого  момента  и
отсчитывается  обычно  дата  открытия  электрона  и  рождения  всей   физики
элементарных частиц.
     Конечно же, решение одной крупной задачи немедленно повлекло  за  собой
постановку других задач, проясняющих ситуацию с  новыми  частицами.  В  этом
смысле  1897  год  -  не  более  чем  удобная  и  вполне  разумно  выбранная
мемориальная вешка в биографии электрона. Достаточно сказать, что  сам  этот
термин был придуман раньше и относился совсем к  иному  объекту.  Англичанин
Дж. Стони, тщательно исследовавший открытое М. Фарадеем явление электролиза,
назвал электроном отрицательный заряд одновалентного иона еще в  1891  году.
Поэтому  в  отношении  новой  частицы  довольно  долгое  время  существовала
изрядная терминологическая неразбериха - ее  отмечали  в  литературе  и  как
"ион",  и  как  "электрон",  и  как  "корпускулу  электричества"  (последнее
название употреблял сам "Джи-Джи"). Как ни странно, эта  путаница  оказывала
заметное влияние на научные выводы ряда работ, но уже с  первых  лет  нового
века недоразумение было полностью устранено.
     Примерно к тому  же  времени  завершился  цикл  экспериментов  Дж.  Дж.
Томсона, Ч. Вильсона, Р. Милликена по измерению заряда и массы электрона.
     Так электрон окончательно вошел в физику, но отнюдь не для того,  чтобы
занять подходящий для легчайшей частицы вещества скромный дальний уголок,  а
с  явными  революционными  намерениями,   и   действительно,   примерно   за
десять-пятнадцать лет своего существования он полностью  подорвал  фундамент
классической науки.  Роль  открытия  электрона  превосходно  характеризуется
следующим высказыванием английского ученого Г. Липсона: "Физика, да и вообще
вся жизнь на Земле, теперь уже никогда не сможет быть такой,  как  до  этого
открытия".
     Мы в определенной степени сумели убедиться, что  открытие  электрона  -
длительный и многотрудный процесс, но он дает представление лишь об одном из
путей к физике элементарных частиц. На самом  деле  у  колыбели  этой  науки
образовался целый оживленный перекресток. Сюда широкими столбовыми  дорогами
и узенькими, едва заметными тропинками  стекались  практически  все  главные
трудности физики XIX века.


У ПЕРЕКРЕСТКА ЗАГАДОК


     Лет сто назад в физике возник взрывообразный интерес  ко  всякого  рода
таинственным и загадочным излучениям и свечениям.  Пышные  прилагательные  в
этом предложении вовсе не дань возвышенному стилю и некоторой  склонности  к
мистико-романтической образности, характерной для популярных корреспонденций
тех  времен.  Наблюдалось,  действительно,  множество  различных  излучений:
светился остаточный газ и флуоресцировала стеклянная колба  в  уже  знакомых
нам  экспериментах  с  газоразрядной   трубкой,   красиво   фосфоресцировали
соединения урана, наконец, в 1887 году  мир  узнал,  что  "генератор  Герца"
излучает какие-то невидимые электромагнитные волны... Причем большинство  из
этих излучений не могли быть сколь-нибудь глубоко объяснены. Отсюда и вполне
понятный ореол таинственности.
     Однако  "лучевой  бум"   оказался   теснейшим   образом   связанным   с
результатами последнего пятилетия прошлого века. В  самом  конце  1895  года
немецкий физик  К.  Рентген  обнаружил,  что  из  точки  пересечения  потока
катодных лучей со стеклянной оболочкой трубки  исходит  странное  излучение,
вызывающее флуоресценцию ряда веществ и обладающее  невероятной  проникающей
способностью. Открытие Х-лучей, как окрестил их сам К. Рентген, обессмертило
его имя: он стал через шесть лет  первым  в  истории  лауреатом  Нобелевской
премии.
     Сейчас мы  настолько  привыкли  к  рентгеновским  лучам,  рентгеновским
установкам,  наконец,  к  врачам-рентгенологам,   что   вряд   ли   способны
представить современную медицину без  всего  этого.  Кстати,  исключительная
популярность К. Рентгена и его работ - а он стал широко  известен  буквально
через несколько месяцев после  своего  знаменитого  доклада  в  Вюрцбургском
университете - связана именно с чрезвычайно скорым прикладным использованием
его метода в медицинских целях. Уже через год-два после открытия каждый, кто

Части Следующая


Купить фантастическую книгу тем, кто живет за границей.
(США, Европа $3 за первую и 0.5$ за последующие книги.)
Всего в магазине - более 7500 книг.

Русская фантастика >> Книжная полка | Премии | Новости (Oldnews Курьер) | Писатели | Фэндом | Голосования | Календарь | Ссылки | Фотографии | Форумы | Рисунки | Интервью | XIX | Журналы => Если | Звездная Дорога | Книжное обозрение Конференции => Интерпресскон (Премия) | Звездный мост | Странник

Новинки >> Русской фантастики (по файлам) | Форумов | Фэндома | Книг